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Wavelet bases

Introduction

While browsing webpages, you certainly have downloaded interlaced
GIF images. During the download, a progressively detailed image is
displayed on screen. This idea of consecutive approximations at finer
and finer resolutions is formalized by the concept of multiresolution
approximation (or multiresolution analysis).

Dyadic wavelets are wavelets which satisfy an additional scaling
property. This property allows the implementation of a Fast Dyadic
Wavelet Transform with filter banks.

The definition of dyadic wavelets comes from the definition of
multiresolution approximations.
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Wavelet bases

Multiresolution Approximations
A sequence of closed subspaces {Vj}jEZ of LZ(R):
obtained by dilation fOEV, & f (%) €Viis

stable under dyadic translation f(t) € V; & f(t — 2/k) € V;

_____

LPR);— - —> Vi, —V, — V,; — - —> {0}
i [l7 = Py s = of , | iim ||y =0

Definition 7.1: Multiresolutions A seguence {Vf}jez of closed

subspaces of L%(R) is a multiresolution approximation if the above
properties are satisfied and there exists 6 such that {0(t — n)},cz
IS a Riesz basis of V.
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Scaling Function

Theorem 7.1.

Let us denote

et (V) _,

the scaling function having a Fourier transform

The family {¢ j'n}nEZ

be a multiresolution approximation and ¢ be

B(w) = 4)
( el oo|9(a)+2k7t)| ) /2
t—2J
¢]n(t)_\/_— < n)

is an orthonormal basis of V; forall j € Z




Wavelet bases

Scaling Function

Scaling function ¢: V; = Span{$; .} _ P n(t) = Td)( — )

¢ =¢doo €V b1, €V, $b_1n EV_4

A A A

‘A—!—H—f—f—'—' :/;\:r H+




Wavelet bases

Example: Haar Multiresolutions

Piecewise-constant approximation: V; = {f|f constanton [2/n,2/(n + 1)|}
Linear approximation of f using V;: Py (f) = Yol din)Pin
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Generalizes to higher order spline approximations.




Wavelet bases

Example: Spline Approximations

The space V; of splines of degree m = 0 is the set of functions that are m — 1
times continuously differentiable and equal to a polynomial of degree m on
any interval [2/n,2/(n + 1)| for n € Z. When m = 0, it is a piecewise
constant multiresolution approximation. When m = 1, functions in'V; are
piecewise continuous.

A Riesz basis of polynomial splines is constructed with box splines. A box
spline 6 of degree m Is computed by convolving the box window 1, 1 with

itself m + 1 times and centering at 0 or 2.
0.8 ‘

1t

0.6} 1 0.8}

O
—

0l | 06

0.4

0.2} 1
0.2

% 0 1 > 990 0 10

Cubic box Spline 6 and its Fourier transform 6




Wavelet bases
Approximation
Orthogonal projection of f over V;: Py (f) = Zn(f, #jn)®jn

Approximation at the scale 2/: a;[n] = (f, ¢; )

f(t)
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Scaling Equation
VicVi_y = 2712¢(t/2) eV, C V

{¢p(t — n)},ez @ orthonormal basis of V

O(2w) = %h(w)qﬁ(w) h(w) = Z:zo_oo h[n]e=ine
BarHe) = L)o@t p o

. P - -
o(w) =1 ]I h(Qﬁw)) o(27Pw)  If ¢(w) is continuous at w = 0

+oo

— lim 627w =4(0)  dlw) = [] MEL24(0)




Wavelet bases

Scaling Equation

Theorem 7.2: Mallat, Meyer. Let ¢ € L#(R) be an integrable scaling
function. The Fourier series of h[n] = (27Y2¢(t/2), p(t —n)) satisfies

voeR,  |A)| + |Ai(w+m)| =2 (7.29)
and

h(0) =2 (7.30)
Conversely, if h(w) is 2m periodic and continuously differentiable in a
neighborhood of w = 0, if it satisfies (7.29) and (7.30) and if
inf ]|ﬁ(w)| > 0

wE[-m/2,m/2
then
T R(2Pw)
b =] | =%
p=1

is the Fourier transform of a scaling function ¢ € L?(R).
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Scaling Equation

Vo eR,  |A()| +|i(w+m]|* =2 (7.29)

Discrete filters h[n] satisfying (7.29) are called conjugate mirror filters.

It entirely determines the scaling function and most of its properties. The
scaling function is compactly supported if and only if A has a finite number

of non zero coefficients.
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Example: Cubic Spline

—2 0 2

The solid line gives |A(w)|” on
|—m, ] for a cubic spline
multiresolution. The dotted line
corresponds to |§(w)|?

h[n]

0

0,766130398

1,-1

0,433923147

2,-2

-0,050201753

3,-3

-0,110036987

4,-4

0,032080869

5,-5

0,042068328

6,-6

-0,017176331

7,-7

-0,017982291

10,-10

-0,004353840

11,-11

-0,003882426

12,-12

0,002186714

13,-13

0,001882120

14,-14

-0,001103748

15,-15

-0,000927187

16,-16

0,000559952

17,-17

0,000462093

18,-18

-0,000285414

8,-8

0,008685294

9.-9

0,008201477

19,-19

-0,000232304

20,-20

0,000146098

Conjugate Mirror Filters h[n] for Cubic
Splines m = 3. The coefficients below
10~* are not given
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Orthogonal Wavelets

—————

L*(R) —> - Y Vi1 Y hf Y Vi - —> 10}
e W Wi, W1 i

+o0
Decomposition into detail spaces: L*(R) = @ W;=V; @ W,

j=—o0 7<Jo

Truncated: {y;,j < jo,n € Z}U{¢pj nln € Z} {
Wavelet basis of L2(R/Z): {)jnlj <jo, 0 <n <277} U{¢p;, n|0 < n < 270}

Wavelet transform: computing the coefficients:

U770 SR UR (/| N
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Orthogonal Wavelets
Detail spaces W;: V,_; =V, © W, ij_lf = ijf + ijf

I2(R) —> - Y /8 Y v, ijﬂ e —> {0}
W, w, W,

Wavelet functiony: W, = Span(y; n) P a(t) = \/_l/) (t szln)

Theorem 7.3: Mallat, Meyer. Let ¢ be a scaling function and h the corresponding
conjugate mirror filter. Let i be the function having a Fourier transform

i =70(3)4(3)

§(w) = e “h*(w + 1)

1 (t=2n
wj,n(t)—\/?l:b( 2 )

For any scale 2/, {‘/’f'n}nez is an orthonormal basis of W;. For all scales,

with

Let us denote

{Win} (myez2 1S an orthonormal basis of  L*(R).
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Orthogonal Wavelets

Lemma 7.1. The family {l/)j'n}nEZ is an orthonormal basis of W; if

and only if
G()|* + §(w +m)]? =2
and
Gh* () + §(w+mh (w+m)=0

g: Fourier series of g[n] = <\/i§1p G) ,d(t — n)>
S¥(5) = 242 o gln] Bt — )

J(w) = e h*(w +m) gln] = (=1)*"h[1 —n]

The h and g filters are a conjugate mirror filter bank.
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Orthogonal Wavelets

Cubic spline scaling function and the corresponding cubic spline Battle-Lemarié
wavelet, and their Fourier transform. The wavelet is a cubic spline because it is a
linear combination of cubic splines.

—

ling function

scaling|function . Thesc |

- Cubic spling orthogonal | g Fouriet transform of
0.5( |

3
SN = S <R

-5 0 5 = —105 0 ﬁ 20

-2 —m m 21
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Orthogonal Wavelets

Orthogonal projection of a signal f in a detail space W;:

Pw.f = i (fojnjn = f= i Pw.f = i i (fr¥in)¥in
n=—oo j=—oo j=—00 n=—oo

Approximation

L0 . | ..|H\.
[T TP T T [

| Wavelet  coefficients  d;[n] =

S 1oie . Afjn) caloulated at scales 2/
with the cubic spline wavelet. The
T T up or down Diracs give the
27 | . PR . amplitudes of positive or negative
wavelet coefficients at a distance

] H—1 2/n at each scale 2/. At the top is
22 | — - the  remaining  coarse-signal
approximation a;[n] = (f, ¢, ) for

40} ‘ | ’ ' ]

20F .
OMM /=5

-20E . : : :
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Haar Wavelets

Projection on approximate space Py, (f) = Z(f, O )Ojn

Projection on detail space Pw.(f) = Z( FimMWim oo g1
Py (f) = Py(f) + Pw(f) S
L ] L] . 2in 2/(n+1)
Fine Coarse

) ) . ) 23{2 ......... .—1’[)%“
approximation approximation

0.8f j\ {_\r\\ 27n Qj(n—l_l)
Pradf)

08|

0EF

o4l ‘—

02fF
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Wavelet bases
Choosing a Wavelet

Most applications of wavelet bases exploit their ability to efficiently
approximate particular classes of functions with few nonzero
wavelet coefficients

The design of @ must be optimized to produce a maximum number
of wavelet coefficients ( iR j,n) that are close to zero. This depends
on the regularity of f, the number of vanishing moments of ), and
the size of its support

To construct an appropriate wavelet from a conjugate mirror filter
h[n], we relate these properties to conditions on h(w)



Wavelet bases
Property: Vanishing Moments

Y has p vanishing moments if
+00
J tky()dt=0 for 0<k<p

This means that 1 is orthogonal to any polynomial of degree p — 1.

If £ is regular and 1y has enough vanishing moments, then the wavelet
coefficients |(f, ;)| are small at fine scales 2/.



Wavelet bases
Property: Vanishing Moments

Theorem 7.4 relates the number of vanishing moments of 1 to the vanishing
derivatives of ¥(w) at w = 0 and to the number of zeros of h(w) at w = m.

It also proves that polynomials of degree p — 1 are then reproduced by the
scaling functions.

Theorem 7.4: Vanishing Moments. Let iy and ¢ be a wavelet and a scaling
function that generate an orthogonal basis. Suppose that |y (t)| = O ((1 +
tz)‘p/z‘l) and [¢p(t)| =0 ((1 + tz)‘p/z‘l). The four following statements
are equivalent:

1. The wavelet y has p vanishing moments.

2. ¥ (w) and its first p — 1 derivatives are zero at w = 0.

3. h(w) and its first p — 1 derivatives are zero at w = .
4. Forany 0 < k <p,

g.(t) =Y+* n*¢p(t —n) is a polynomial of degree k




Wavelet bases

Property: Size of Support

If f has an isolated singularity at t, and if ¢, is inside the support of y; ,,(t) =
277/29(277t —n), then (f,¢;,) may have a large amplitude. If ¥ has a
compact support of size K, at each scale 2/ there are K wavelets y;, with a
support including t,

To minimize the number of high-amplitude coefficients we must reduce the
support size of . Theorem 7.5 relates the support size of h to the support of ¢
and :

Theorem 7.5: Compact Support.  The scaling function ¢ has a compact
support if and only if h has a compact support and their supports are equal. If
the support of h and ¢ is [Ny, N,], then the support of yis [(N; — N, + 1)/
2,(N, —N; +1)/2].
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Property: Support versus Moments

Daubechies has proved that, to generate an orthogonal wavelet with p
vanishing moment, a filter h with minimum length 2p had to be used

Daubechies filters, which generate Daubechies wavelets, have a length of 2p.
Daubechies wavelets are optimal in the sense that they have a minimum size
of support for a given number of vanishing moments

When choosing a particular wavelet, we face a trade off between the number
of vanishing moments and the support size:

f: few isolated singularities

: .. f: dense singularities
very regular between singularities

large number of vanishing moment  decrease the size of support at the cost of
reducing the number of vanishing

moments



Wavelet bases

Property: Regularity

Wavelet regularity is much less important than their vanishing moments. The
number of vanishing moments and the regularity of orthogonal wavelets are
related, but it is the number of vanishing moments and not the regularity that
affects the amplitude of the wavelet coefficients at fine scales.

Theorem 7.6 relates the uniform Lipschitz regularity of ¢ and v to the number
of zeros of h(w) at w = 7:

Theorem 7.6: Tchamitchian. Let h(w) be a conjugate mirror filter with p
zeroes at  and that satisfies the sufficient conditions of Theorem 7.2. Let us
perform the factorization

2
If sup|l(w)| = B, then ¥ and ¢ are uniformly Lipschitz « for

wER

iw\P
ﬁ(w)=ﬁ<1+e > ()

a<ayg=p-—1log,B—1

There is no compactly supported orthogonal wavelet which is indefinitely
differentiable



Wavelet bases

Property: Symmetry

Symmetric scaling functions and wavelets are important because they are
used to build bases of regular wavelets over an interval, rather than the real
axis.

Daubechies has proved that, for a wavelet to be symmetric or antisymmetric,
Its filter must have a linear complex phase.

The only symmetric compactly supported conjugate mirror filter is the Haar
filter, which corresponds to a discontinuous wavelet with one vanishing
moment. Besides the Haar wavelet, there is no symmetric compactly
supported orthogonal wavelet.



Wavelet bases
Magnitude of Wavelet Coefficients

¢» has p vanishing moments if: >
+oo P = 2
[T g)dt=0 0<k<p 1
If fis C*on supp(¥jn), p>a: t= * —2323n 0
1 r—2n e id j -1
(fy¥jn) = ﬁ/f(f)w( — )dx = 272 /R(Z t)w(t)dt .
272 2] I =1 0 1 2

f(x)=Plx—2'n) + R(x — 2/n) = P(2't) + R(2t)
where deg(P) < a and |R(z)| < Cfl|z||*
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Vanishing Moment Constraint

Smooth areas:  vanishing moments: 1 —
1 i 0.8} | f i
VE <p-—1, / Y(x)x"dr =0 oo : '

0 0.4 : !

— (f, ;) =0 if fis C% a <p . . A AN

o2} ' i ' o T .l ' : il

T .

| y of SR
Near singularities:  Supp(v;.,,) small ool , |

— few large coefficients near singularities

Theorem: Supp(v);.,,) is larger than 2p—1 |

-
e—t--o-1F
Q_Tﬂ-_:u_.
oi-g
=0
5

Smoothness of 1 : fa = Z o) S 1 ‘[ - f

(7,n)Eln n g s E 0 : -

T

fav same smoothness as B
- - s —
— only for cosmetic reason osf T R T T '
Heuristic : increasing p increases 0 °l: “T “Jjé "‘li I ?1°?1T u?$
the smoothness of ¥ osf !
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Daubechies Family
Compute h that satisfies

(@) + [h(w +m)|? =2

h(0) = V2
dkh
eV — (n) =
p k < p, " (m) =0

Daubechies wavelet with p VM:
Orthogonal wavelets

Minimal support 2p — 1

Filter h|n]: n=>0
p =1 (Haar): [0.7071;0.7071

p=2: [0.4830; 0.836?; 0.2241; —0.1294]
n=0 "n=0
\
p=3: [0;0.3327;0.8069;0.4599;
—0.1350; —0.0854; 0.0352]

p=1
—
o
i~
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Wavelet bases T am i
Orthogonal Wavelets and Discrete Filters

Conjugate mirror filters (g and h) are a particular instance of perfect
reconstruction filter banks. The dyadic nature of multiresolution approximations
are closely related to the possibility of implementing elementary signal
subsampling by erasing one sample every two, and elementary oversampling by

zero insertion between two consecutive samples.

The coefficients ai[n] in V; and d,[n] in W, are computed from ao[n] in V;_,

by applying conjugate mirror filters and subsampling the output:

ai[n] =ag*h2n]  di[n] = ag * g[2n]
with A[n] = hl-n]  gln] = g[n

Wavelets and scaling functions are evaluated as in the orthogonal case.
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Fast Wavelet Transform

a; »— h #2 ——ai1] »— h ¢2 —— A4 —>—
B g ¢2 ﬂfdj_l_l - 'g *2 —l-—dj+2

The coefficients of h are defined by the scaling equation
56 (5) = Zie e hinlg(t — )
"E29) 50)

or, in the Fourier domain ¢(w) = [1;2)

The coefficients of g are defined by the wavelet scaling equation

SV (5) = Zh2 e glnlg(t — )

or, in the Fourier domain ¥ (w) = \/—Eg (%) 0 (E)
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Fast Inverse Wavelet Transform

A4 —— TZ h dj+1

diyg =421 g dj+1

}2 g

ao[n] is reconstructed from ai[n] and di[n] by inserting zeroes between two

consecutive samples and summing their convolutions with h and g:
agln] = z(ay) x hn] + z(dy) * g[n]

where the z operator represents the insertion of zeroes.

The construction of orthogonal wavelets is equivalent to the synthesis of

conjugate mirror filters having a stability property.
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Wavelet bases
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Perfect Reconstruction Filter Banks

A perfect reconstruction filter bank decomposes a signal by filtering and
subsampling. It reconstructs it by inserting zeroes, filtering and summation.

A (discrete) two-channel multi-rate filter bank convolves a signal a, with a
low-pass filter h[n] = h[-n]and a high-pass filter g[n] = g[—n]and then
subsamples by 2 the output:

a;[n] =agxh[2n] and dy[n] = qq * g[2n]

A reconstructed signal d, is obtained by filtering the zero expanded signals
with a dual low-pass filter o and a dual high-pass filter §. If ¥ denotes the
signal obtained from x by inserting a zero between every sample, this can be

~

written as: dy[n] = d, * h[n] + d; * g[n].

o1 |xlp]l ifn=2p
x["]‘{o ifn = 2p + 1
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Perfect Reconstruction Filter Banks

The following figure illustrates the decomposition and reconstruction process.
The input signal is filtered by a low-pass and a high-pass filter and subsampled.

The reconstruction is performed by inserting zeroes and filtering with dual

filters h and §

—» h ‘2 —»—al[n]_._p

=l

ap[n]

E—’* ay[n]
o

The filter bank is said to be a perfect reconstruction filter bank when @, = a,.

If, additionally, h = hand g = g, the filters are called conjugate mirror filters.
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Perfect Reconstruction Filter Banks

Perfect reconstruction filter banks are characterized in a theorem by Theorem
7.11:

Theorem 7.11: Vetterli. The filter bank performs an exact reconstruction for
any input signal if and only if
h(w+ m)h(w) + §*(w+m)§(w) =0
and
h*(@)h(w) + §"(w)§ (@) = 2

Eliminating g and g leads to the necessary condition
A*()h(w) + " (0 + Mh(w + 1) = 2
For finite impulse-response filters, there exists a € R and [ € Z such that

j(w) = ae‘i(z”l)‘“?z*(w +m) and §(w)=a e CHDOR (o 4 1)
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Conjugate Mirror Filters
A finite impulse conjugate mirror filter bank is characterized by a filter A which
satisfies:

()| +|A(w + m)|* = 2 (7.139)

It is identical to the filter condition (7.29) in Theorem 7.2 that is required in
order to synthesize orthogonal wavelets. It is also equivalent to discrete
orthogonality properties:

A Riesz basis is orthonormal if the dual basis is the same as the original basis.
For filter banks this means that h = h and g = §. The filter h is then a
conjugate mirror filter satisfying (7.139). And the resulting family {h[n —
21], g[n — 21]},e7 is an orthogonal basis of % (Z).




Time meets frequency

Example: pyramid decomposition

Original Transform coefficients
128,129,125,64,65, --- 4123, —-12.4,—-96.7,4.5, ...
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Time meets frequency

Example: pyramid decomposition

Horizontal edges |

Vertical edges
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Wavelet bases
Orthogonality and Biorthogonality

When the Riesz basis Is an orthogonal basis, the multiresolution
approximation is orthogonal, and the base atom is called a scaling function. It

IS always possible to orthogonalize a multiresolution approximation.

However, orthogonalities imposes some constraints that may not be desirable.
One of the most important is that a compactly supported (orthogonal) scaling
function cannot symmetric and continuous. The symmetry is useful in the

analysis of finite signals.

Some of these restrictions (notably the absence of symmetry) can be avoided

by using biorthogonal multiresolution approximations.



Wavelet bases

A pair {Vj}jEZ , {V}* },ez of multiresolution approximations is a biorthogonal

multiresolution system if and only if

L2(R) = Vo @ (Vo)™

Then V; has a Riesz basis of the form 8*(t — n), n € Z, such that the translations
of 8 and of 6* form a biorthogonal system:
(0(t —k),0"(t —n)) = 8rk

We have a biorthogonal bases system instead of a single orthogonal basis.
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Biorthogonal wavelets

Biorthogonal wavelets are defined similarly to orthogonal wavelets, except that
the starting point is biorthogonal multiresolution approximations. The following
decompositions are performed:

Vi1 = V; @ W; with W; € (V;")*

Vi =VI@WS with W c (V;)*
Like in the orthogonal case, a signal in L? can be written as:

FO) =D (L0 n(t) =Y (ol 0im + D> (fh ) (t)

Jm€eL nez k<jn€Z

= > (f a0, () =D (Fdin)din )+ Y (k)i ()

J,nEZ ne k<jn€Z
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Biorthogonal wavelets

Below is a biorthogonal system which includes a cubic B-spline. Dropping the
orthogonality constraint makes possible to have both regularity and symmetry.

Biorthogonal cubic B-spline scaling function  Dual scaling function

0.8 2
15

0.6
1
0.4 05
0.2 Of
-05

5 0 1 2 -5 0 5

Biorthogonal spline wavelet Dual Wavelet

0.5




Wavelet bases b ke

"

Biorthogonal wavelets and Discrete Filters

The scaling equations on the scaling functions and wavelets show that the
decomposition and reconstruction of a signal from a resolution to the next one is

Implemented by perfect reconstruction filter banks.

The coefficients ai[n] in V; and di[n] in W, are computed from ao[n] in V;_,
by applying conjugate mirror filters and subsampling the output:
ay[n] = agp * hy[2n] di[n] = ag * g1[2n]

with — hifn] = hl=n]  gi[n] = g[-n]

The construction of biorthogonal wavelets is equivalent to the synthesis of perfect

reconstruction filters having a stability property.
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Fast wavelet transform:
aj—|: h1 _¢2 —I-——aj+]—|: hl —*2 +aj+2+___
g1[1v2 —dju1 81 2 = dia

The coefficients of h and g are defined by the scaling equations

+o0
oT(t)=v2 ) hln]o* (2t —n)

nN=—0o0

+oo
() =v2 Y glnjet(2t —n)

nN=—0o0
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Fast inverse wavelet transform:

42 —» 1‘2 ho ai+1 T 2 ho a;
dj_|_2 — - 12 g9 dj+1 ?2 82

ao[n] is reconstructed from ai[n| and di[n] by inserting zeroes between two
consecutive samples and summing their convolutions with the dual filters h, and
g, which define the dual scaling equations:

ag[n] = z(ay) * ha[n] + z(dy) * ga[n]

where the z operator represents the insertion of zeroes.

The coefficients of h, and g, are defined by the scaling equationS'

O(1) = V2 3 halnlo(2t =) SO =VE Y mnlofzt - )

n=—oo n=-—oco
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Property: Scaling Equation

As In the orthogonal case, y¥(t) and ¢(t/2) are related by a scaling equation

which is a consequence of the inclusions of the resolution spaces from coarse
to fine:

=¥ () Zoo glnlp(e —n)

Similar equations exist for the dual functions which determine the filters h,
and g-.
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Property: Vanishing Moments

A biorthogonal wavelet has m vanishing moments if and only if its dual
scaling function generates polynomials up to degree m. This can be verified by
looking at the biorthogonal decomposition formulas.

Hence there is an equivalence theorem between vanishing moments and the
number of zeroes of the filter's transfer, provided that duality has to be taken
Into account. Thus the following three properties are equivalent:

® the wavelet ¥ has p vanishing moments

® the dual scaling function ¢, generates polynomials up to degree p

® the transfer function of the dual filter h, and it p — 1 first derivatives vanish
Alw =m

and the dual result is also valid. Duality appears naturally, because the filters
determine the degree of the polynomials which can be generated by the scaling
function, and this degree is equal to the number of vanishing moments of the
dual wavelet.
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Property: Compact Support

If the filters h and h, have a finite support, then the scaling functions have the
same support, and the wavelets are compactly supported. If the supports of the
scaling functions are respectively [N, N,] and [M;,M,], then the
corresponding wavelets have support [(Ny — M, +1)/2,(N, — M; + 1)/2]
and [(M; — N, +1)/2,(M, — N; + 1)] respectively.

The atoms are thus compactly supported if and only if the filters h and h,, are.
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Property: Regularity
Theorem 7.6 provides again a sufficient regularity condition. Remember that

this condition bears on the filter A which determines the scaling equation.
Hence the regularity of the primal atoms are related to the primal filters.

Theorem 7.6: Tchamitchian. Let h(w) be a conjugate mirror filter with p

zeroes at m and that satisfies the sufficient conditions of Theorem 7.2. Let us
perform the factorization

iw\ P
ﬁ(w)=ﬁ<1+e ) i(w)

2
If sup|l(w)| = B, then ¥ and ¢ are uniformly Lipschitz « for

w€eR
a<ag=p-—1log,B—1
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Property: Wavelet Balancing

Consider the following decomposition of f:

+ 0o

F= > (FWiain

n,j=—oo

The number of vanishing moments of a wavelet is determined by its dual filter.
It corresponds to the approximating power of the dual multiresolution
sequence. This is why it is preferred to synthesize a decomposition filter h with
many vanishing moments, and possibly with a small support.

On the other hand, this same filter h determines the regularity of ¢, and hence
of . This regularity increases with the number of vanishing moments, that is,
with the number of zeroes of h.
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Property: Symmetry

Unlike the orthogonal case, it is possible to synthesize biorthogonal wavelets
and scaling functions which are symmetric or antisymmetric and compactly
supported. This makes It possible to use the folding technique to build
wavelets on an interval.

If the filters h and h, have and odd length and are symmetric with respect to 0,
then the scaling functions have an even length and are symmetric, and the
wavelets are also symmetric. If the filters have an even length and are
symmetric with respect to n = 1/2, then the scaling functions are symmetric
with respect to n = 1/2, while the wavelets are antisymmetric.
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Homework

Chapter 7: 7.2 and 7.7 (a) (b) (A Wavelet Tour of Signal Processing, 3
edition)
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