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Introduction

◆While browsing webpages, you certainly have downloaded interlaced

GIF images. During the download, a progressively detailed image is

displayed on screen. This idea of consecutive approximations at finer

and finer resolutions is formalized by the concept of multiresolution

approximation (or multiresolution analysis).

◆Dyadic wavelets are wavelets which satisfy an additional scaling

property. This property allows the implementation of a Fast Dyadic

Wavelet Transform with filter banks.

◆The definition of dyadic wavelets comes from the definition of

multiresolution approximations.
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A sequence of closed subspaces 𝐕𝑗 𝑗∈ℤ
of  𝐋𝟐 ℝ :

obtained by dilation                   𝑓 𝑡 ∈ 𝐕𝑗 ⇔ 𝑓
𝑡

2
∈ 𝐕𝑗+1

stable under dyadic translation  𝑓 𝑡 ∈ 𝐕𝑗 ⇔ 𝑓 𝑡 − 2𝑗𝑘 ∈ 𝐕𝑗

lim
𝑗→−∞

𝑓 − 𝑃𝐕𝑗
𝑓 = 0 lim

𝑗→+∞
𝑃𝐕𝑗

𝑓 = 0

Definition 7.1: Multiresolutions A sequence 𝐕𝑗 𝑗∈ℤ
of closed

subspaces of 𝐋𝟐 ℝ is a multiresolution approximation if the above

properties are satisfied and there exists 𝜃 such that 𝜃 𝑡 − 𝑛 𝑛∈ℤ

is a Riesz basis of 𝐕0.

Multiresolution Approximations

𝐋𝟐 ℝ 𝐕𝑗−1 𝐕𝑗 𝐕𝑗+1 0
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Scaling Function

Theorem 7.1. Let 𝐕𝑗 𝑗∈ℤ
be a multiresolution approximation and 𝜙 be

the scaling function having a Fourier transform

෠𝜙 𝜔 =
መ𝜃 𝜔

σ𝑘=−∞
+∞ መ𝜃 𝜔 + 2𝑘𝜋

2 1/2

Let us denote

𝜙𝑗,𝑛 𝑡 =
1

2𝑗
𝜙

𝑡 − 2𝑗𝑛

2𝑗

The family 𝜙𝑗,𝑛 𝑛∈ℤ
is an orthonormal basis of 𝐕𝑗 for all 𝑗 ∈ ℤ
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Scaling Function

Scaling function  𝜙:           𝐕𝑗 = Span 𝜙𝑗,𝑛 𝑛∈ℤ
𝜙𝑗,𝑛 𝑡 =

1

2𝑗
𝜙

𝑡−2𝑗𝑛

2𝑗

𝜙 = 𝜙0,0 ∈ 𝐕0 𝜙1,𝑛 ∈ 𝐕1 𝜙−1,𝑛 ∈ 𝐕−1
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Piecewise-constant approximation: 𝐕𝑗 = 𝑓|𝑓 constant on 2𝑗𝑛, 2𝑗 𝑛 + 1

Linear approximation of  𝑓 using  𝐕𝑗:   𝑃𝐕𝑗
𝑓 = σ𝑛 𝑓, 𝜙𝑗,𝑛 𝜙𝑗,𝑛

Generalizes to higher order spline approximations.

Example: Haar Multiresolutions

𝜙𝑗,𝑛
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◆The space 𝐕𝑗 of splines of degree 𝑚 ≥ 0 is the set of functions that are 𝑚 − 1

times continuously differentiable and equal to a polynomial of degree 𝑚 on 

any interval 2𝑗𝑛, 2𝑗 𝑛 + 1 for 𝑛 ∈ ℤ. When 𝑚 = 0, it is a piecewise 

constant multiresolution approximation. When 𝑚 = 1, functions in 𝐕𝑗 are 

piecewise continuous.

◆A Riesz basis of polynomial splines is constructed with box splines. A box 

spline 𝜃 of degree 𝑚 is computed by convolving the box window 𝟏 0,1 with 

itself 𝑚 + 1 times and centering at 0 or ½. 

Example: Spline Approximations

𝜃 𝑡 መ𝜃 𝜔

Cubic box Spline 𝜃 and its Fourier transform መ𝜃
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Orthogonal projection of  𝑓 over  𝐕𝑗:  𝑃𝐕𝑗
𝑓 = σ𝑛 𝑓, 𝜙𝑗,𝑛 𝜙𝑗,𝑛

Approximation at the scale  2𝑗:  𝑎𝑗 𝑛 = 𝑓, 𝜙𝑗,𝑛

Approximation

Discrete multiresolution

approximations 𝑎𝑗 𝑛 at

scales 2𝑗 , computed

with cubic splines
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Fourier Transform

Scaling Equation

𝐕𝑗 ⊂ 𝐕𝑗−1 ⟹ 2−1/2𝜙 𝑡/2 ∈ 𝐕1 ⊂ 𝐕0

𝜙 𝑡 − 𝑛 𝑛∈ℤ ∶ orthonormal basis of  𝐕0
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Scaling Equation

Theorem 7.2: Mallat, Meyer. Let 𝜙 ∈ 𝐋𝟐 ℝ be an integrable scaling

function. The Fourier series of ℎ 𝑛 = 2−1/2𝜙 𝑡/2 , 𝜙 𝑡 − 𝑛 satisfies

∀𝜔 ∈ ℝ, ෠ℎ 𝜔
2

+ ෠ℎ 𝜔 + 𝜋
2

= 2 7.29

and
෠ℎ 0 = 2 7.30

Conversely, if ෠ℎ 𝜔 is 2𝜋 periodic and continuously differentiable in a

neighborhood of 𝜔 = 0, if it satisfies (7.29) and (7.30) and if

inf
𝜔∈ −𝜋/2,𝜋/2

෠ℎ 𝜔 > 0

then

෠𝜙 𝜔 = ෑ

𝑝=1

+∞
෠ℎ 2−𝑝𝜔

2

is the Fourier transform of a scaling function 𝜙 ∈ 𝐋𝟐 ℝ .
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Discrete filters ℎ 𝑛 satisfying (7.29) are called conjugate mirror filters.

It entirely determines the scaling function and most of its properties. The

scaling function is compactly supported if and only if ℎ has a finite number

of non zero coefficients.

Scaling Equation

∀𝜔 ∈ ℝ, ෠ℎ 𝜔
2

+ ෠ℎ 𝜔 + 𝜋
2

= 2 7.29
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Conjugate Mirror Filters ℎ 𝑛 for Cubic 

Splines 𝑚 = 3. The coefficients below 

10−4 are not given

The solid line gives ෠ℎ 𝜔
2

on 

−𝜋, 𝜋 for a cubic spline 

multiresolution. The dotted line 

corresponds to ො𝑔 𝜔 2

Example: Cubic Spline
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Decomposition into detail spaces: 𝐋𝟐 ℝ = 𝐖𝑗= 𝐕𝑗0
𝐖𝑗

Wavelet basis of  𝐋𝟐 ℝ :   Full:   𝜓𝑗,𝑛| 𝑗, 𝑛 ∈ ℤ2

Truncated:   𝜓𝑗,𝑛|𝑗 ≤ 𝑗0, 𝑛 ∈ ℤ ڂ 𝜙𝑗0,𝑛|𝑛 ∈ ℤ

Wavelet basis of 𝐋𝟐 ℝ/ℤ :  𝜓𝑗,𝑛|𝑗 ≤ 𝑗0, 0 ≤ 𝑛 < 2−𝑗 ڂ 𝜙𝑗0,𝑛|0 ≤ 𝑛 < 2−𝑗0

Wavelet  transform: computing the coefficients:

𝑓, 𝜓𝑗,𝑛 0≤𝑛<2−𝑗

𝑗≤𝑗0
,𝑓 ڂ 𝜙𝑗0,𝑛 0≤𝑛<2−𝑗0

Orthogonal Wavelets

⋯𝐋𝟐 ℝ 𝐕𝑗−1
𝐕𝑗 𝐕𝑗+1 ⋯ 0

𝐖𝑗−1 𝐖𝑗 𝐖𝑗+1
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Orthogonal Wavelets

Detail spaces  𝐖𝑗: 𝐕𝑗−1 = 𝐕𝑗 ⊕ 𝐖𝑗 𝑃𝐕𝑗−1
𝑓 = 𝑃𝐕𝑗

𝑓 + 𝑃𝐖𝑗
𝑓

𝐋𝟐 ℝ ⋯ 𝐕𝑗−1 𝐕𝑗 𝐕𝑗+1 ⋯ 0

𝐖𝑗−1 𝐖𝑗 𝐖𝑗+1

Wavelet function 𝜓:      𝐖𝑗 = Span 𝜓𝑗,𝑛 𝑛∈ℤ
𝜓𝑗,𝑛 𝑡 =

1

2𝑗
𝜓

𝑡−2𝑗𝑛

2𝑗

Theorem 7.3: Mallat, Meyer. Let ϕ be a scaling function and ℎ the corresponding

conjugate mirror filter. Let 𝜓 be the function having a Fourier transform

෠𝜓 𝜔 =
1

2
ො𝑔

𝜔

2
෠𝜙

𝜔

2
with

ො𝑔 𝜔 = 𝑒−𝑖𝜔 ෠ℎ∗ 𝜔 + 𝜋
Let us denote

𝜓𝑗,𝑛 𝑡 =
1

2𝑗
𝜓

𝑡 − 2𝑗𝑛

2𝑗

For any scale 2𝑗 , 𝜓𝑗,𝑛 𝑛∈ℤ
is an orthonormal basis of 𝐖𝑗 . For all scales,

𝜓𝑗,𝑛 𝑗,𝑛 ∈ℤ2 is an orthonormal basis of 𝐋𝟐 ℝ .
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ො𝑔: Fourier series of  𝑔 𝑛 =
1

2
𝜓

𝑡

2
, 𝜙 𝑡 − 𝑛

1

2
𝜓

𝑡

2
= σ𝑛=−∞

+∞ 𝑔 𝑛 𝜙 𝑡 − 𝑛

16

Lemma 7.1. The family 𝜓𝑗,𝑛 𝑛∈ℤ
is an orthonormal basis of 𝐖𝑗 if

and only if

ො𝑔 𝜔 2 + ො𝑔 𝜔 + 𝜋 2 = 2
and

ො𝑔 𝜔 ෠ℎ∗ 𝜔 + ො𝑔 𝜔 + 𝜋 ෠ℎ∗ 𝜔 + 𝜋 = 0

Orthogonal Wavelets

ො𝑔 𝜔 = 𝑒−𝑖𝜔 ෠ℎ∗ 𝜔 + 𝜋

The ℎ and 𝑔 filters are a conjugate mirror filter bank.

Inverse 
Fourier transform 𝑔 𝑛 = −1 1−𝑛ℎ 1 − 𝑛
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Cubic spline scaling function and the corresponding cubic spline Battle-Lemarié

wavelet, and their Fourier transform. The wavelet is a cubic spline because it is a 

linear combination of cubic splines.

Cubic spline orthogonal 

scaling function

Fourier transform of

The scaling function

Fourier transform 

of the wavelet
Orthogonal cubic

spline wavelet

Orthogonal Wavelets

−2𝜋 −𝜋 𝜋 2𝜋
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Orthogonal Wavelets

Orthogonal projection of a signal 𝑓 in a detail space 𝐖𝑗:

𝑃𝐖𝑗
𝑓 = ෍

𝑛=−∞

+∞

𝑓, 𝜓𝑗,𝑛 𝜓𝑗,𝑛 ⟹ 𝑓 = ෍

𝑗=−∞

+∞

𝑃𝐖𝑗
𝑓 = ෍

𝑗=−∞

+∞

෍

𝑛=−∞

+∞

𝑓, 𝜓𝑗,𝑛 𝜓𝑗,𝑛

Wavelet coefficients 𝑑𝑗[𝑛] =

𝑓, 𝜓𝑗,𝑛 calculated at scales 2𝑗

with the cubic spline wavelet. The

up or down Diracs give the

amplitudes of positive or negative

wavelet coefficients at a distance

2𝑗𝑛 at each scale 2𝑗. At the top is

the remaining coarse-signal

approximation 𝑎𝐽 𝑛 = 𝑓, 𝜙𝐽,𝑛 for

𝐽 = −5.
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Projection on approximate space               

Projection on detail space               

Fine

approximation

Coarse

approximation
Details

Haar Wavelets
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Choosing a Wavelet

◆Most applications of wavelet bases exploit their ability to efficiently

approximate particular classes of functions with few nonzero

wavelet coefficients

◆The design of 𝜓 must be optimized to produce a maximum number

of wavelet coefficients 𝑓, 𝜓𝑗,𝑛 that are close to zero. This depends

on the regularity of 𝑓, the number of vanishing moments of 𝜓, and

the size of its support

◆To construct an appropriate wavelet from a conjugate mirror filter

ℎ 𝑛 , we relate these properties to conditions on ෠ℎ 𝜔
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Property: Vanishing Moments

𝜓 has 𝑝 vanishing moments if

න
−∞

+∞

𝑡𝑘 𝜓 𝑡 𝑑𝑡 = 0 for 0 ≤ 𝑘 < 𝑝

This means that  𝜓 is orthogonal to any polynomial of degree 𝑝 − 1.

If 𝑓 is regular and  𝜓 has enough vanishing moments, then the wavelet 

coefficients 𝑓, 𝜓𝑗,𝑛 are small at fine scales 2𝑗.
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Property: Vanishing Moments

Theorem 7.4: Vanishing Moments. Let 𝜓 and 𝜙 be a wavelet and a scaling

function that generate an orthogonal basis. Suppose that 𝜓 𝑡 = 𝑂 ቀ

ቁ

ሺ

ሻ

1 +

𝑡2 −𝑝/2−1 and 𝜙 𝑡 = 𝑂 1 + 𝑡2 −𝑝/2−1 . The four following statements

are equivalent:

1. The wavelet 𝜓 has 𝑝 vanishing moments.

2. ෠𝜓 𝜔 and its first 𝑝 − 1 derivatives are zero at 𝜔 = 0.

3. ෠ℎ 𝜔 and its first 𝑝 − 1 derivatives are zero at 𝜔 = 𝜋.

4. For any 0 ≤ 𝑘 < 𝑝,

𝑞𝑘 𝑡 = σ𝑛=−∞
+∞ 𝑛𝑘𝜙 𝑡 − 𝑛 is a polynomial of degree 𝑘

Theorem 7.4 relates the number of vanishing moments of 𝜓 to the vanishing

derivatives of ෠𝜓 𝜔 at 𝜔 = 0 and to the number of zeros of ෠ℎ 𝜔 at 𝜔 = 𝜋.

It also proves that polynomials of degree 𝑝 − 1 are then reproduced by the

scaling functions.
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Property: Size of Support

Theorem 7.5: Compact Support. The scaling function 𝜙 has a compact

support if and only if ℎ has a compact support and their supports are equal. If

the support of ℎ and 𝜙 is 𝑁1, 𝑁2 , then the support of 𝜓is [
]

𝑁1 − 𝑁2 + 1 /
2, 𝑁2 − 𝑁1 + 1 /2 .

If 𝑓 has an isolated singularity at 𝑡0 and if 𝑡0 is inside the support of 𝜓𝑗,𝑛 𝑡 =

2−𝑗/2𝜓 2−𝑗𝑡 − 𝑛 , then 𝑓, 𝜓𝑗,𝑛 may have a large amplitude. If 𝜓 has a

compact support of size 𝐾, at each scale 2𝑗 there are 𝐾 wavelets 𝜓𝑗,𝑛 with a

support including 𝑡0

To minimize the number of high-amplitude coefficients we must reduce the

support size of 𝜓. Theorem 7.5 relates the support size of ℎ to the support of 𝜙

and 𝜓:



Wavelet bases
25

Property: Support versus Moments

◆ Daubechies has proved that, to generate an orthogonal wavelet with 𝑝

vanishing moment, a filter ℎ with minimum length 2𝑝 had to be used

◆ Daubechies filters, which generate Daubechies wavelets, have a length of 2𝑝.

Daubechies wavelets are optimal in the sense that they have a minimum size

of support for a given number of vanishing moments

◆ When choosing a particular wavelet, we face a trade off between the number

of vanishing moments and the support size:

𝑓: few isolated singularities

very regular between singularities

large number of vanishing moment

𝑓: dense singularities

decrease the size of support at the cost of 

reducing the number of vanishing 

moments
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Property: Regularity

◆ Wavelet regularity is much less important than their vanishing moments. The

number of vanishing moments and the regularity of orthogonal wavelets are

related, but it is the number of vanishing moments and not the regularity that

affects the amplitude of the wavelet coefficients at fine scales.

◆ Theorem 7.6 relates the uniform Lipschitz regularity of 𝜙 and 𝜓 to the number

of zeros of ෠ℎ 𝜔 at 𝜔 = 𝜋：

◆There is no compactly supported orthogonal wavelet which is indefinitely 

differentiable

Theorem 7.6: Tchamitchian. Let ෠ℎ 𝜔 be a conjugate mirror filter with 𝑝
zeroes at 𝜋 and that satisfies the sufficient conditions of Theorem 7.2. Let us

perform the factorization

෠ℎ 𝜔 = 2
1 + 𝑒𝑖𝜔

2

𝑝

መ𝑙 𝜔

If sup
𝜔∈ℝ

መ𝑙 𝜔 = 𝐵, then 𝜓 and 𝜙 are uniformly Lipschitz 𝛼 for

𝛼 < 𝛼0 = 𝑝 − log2 𝐵 − 1
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Property: Symmetry

◆ Symmetric scaling functions and wavelets are important because they are

used to build bases of regular wavelets over an interval, rather than the real

axis.

◆ Daubechies has proved that, for a wavelet to be symmetric or antisymmetric,

its filter must have a linear complex phase.

◆ The only symmetric compactly supported conjugate mirror filter is the Haar

filter, which corresponds to a discontinuous wavelet with one vanishing

moment. Besides the Haar wavelet, there is no symmetric compactly

supported orthogonal wavelet.
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has p vanishing moments  if: 

If      is       on                  ,   

Magnitude of Wavelet Coefficients
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Vanishing Moment Constraint
Smooth areas: vanishing moments:

Near singularities:

Vanishing Moment Constraint
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Daubechies Family
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Conjugate mirror filters (g and h) are a particular instance of perfect

reconstruction filter banks. The dyadic nature of multiresolution approximations

are closely related to the possibility of implementing elementary signal

subsampling by erasing one sample every two, and elementary oversampling by

zero insertion between two consecutive samples.

The coefficients in and in are computed from in

by applying conjugate mirror filters and subsampling the output:

Wavelets and scaling functions are evaluated as in the orthogonal case.

Orthogonal Wavelets and Discrete Filters
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The coefficients of ℎ are defined by the scaling equation
1

2
𝜙

𝑡

2
= σ𝑛=−∞

+∞ ℎ 𝑛 𝜙 𝑡 − 𝑛

or, in the Fourier domain ෠𝜙 𝜔 = ς𝑝=1
+∞ ෡ℎ 2−𝑝𝜔

2
෠𝜙 0

The coefficients of 𝑔 are defined by the wavelet scaling equation
1

2
𝜓

𝑡

2
= σ𝑛=−∞

+∞ 𝑔 𝑛 𝜙 𝑡 − 𝑛

or, in the Fourier domain ෠𝜓 𝜔 =
1

2
ො𝑔

𝜔

2
෠𝜙

𝜔

2

Fast Wavelet Transform
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where the z operator represents the insertion of zeroes.

is reconstructed from and by inserting zeroes between two

consecutive samples and summing their convolutions with h and g:

The construction of orthogonal wavelets is equivalent to the synthesis of 

conjugate mirror filters having a stability property.

Fast Inverse Wavelet Transform
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Fast 2D Wavelet Transform
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Fast Inverse 2D Wavelet Transform
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A perfect reconstruction filter bank decomposes a signal by filtering and

subsampling. It reconstructs it by inserting zeroes, filtering and summation.

A (discrete) two-channel multi-rate filter bank convolves a signal 𝑎0 with a

low-pass filter തℎ 𝑛 = ℎ[−𝑛] and a high-pass filter ҧ𝑔 𝑛 = 𝑔[−𝑛] and then

subsamples by 2 the output:

𝑎1 𝑛 = 𝑎0 ⋆ തℎ 2𝑛 and 𝑑1 𝑛 = 𝑎0 ⋆ ҧ𝑔 2𝑛

A reconstructed signal ෤𝑎0 is obtained by filtering the zero expanded signals

with a dual low-pass filter ෨ℎ and a dual high-pass filter ෤𝑔. If 𝑥ු denotes the

signal obtained from 𝑥 by inserting a zero between every sample, this can be

written as: ෤𝑎0 𝑛 = 𝑎ු1 ⋆ ෨ℎ 𝑛 + ሙ𝑑1 ⋆ ෤𝑔 𝑛 .

𝑥ු 𝑛 = ቊ
𝑥 𝑝 if 𝑛 = 2𝑝
0 if 𝑛 = 2𝑝 + 1

Perfect Reconstruction Filter Banks
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The following figure illustrates the decomposition and reconstruction process.

The input signal is filtered by a low-pass and a high-pass filter and subsampled.

The reconstruction is performed by inserting zeroes and filtering with dual

filters ෨ℎ and ෤𝑔

The filter bank is said to be a perfect reconstruction filter bank when ෤𝑎0 = 𝑎0.

Perfect Reconstruction Filter Banks

If, additionally, ℎ = ෨ℎ and 𝑔 = ෤𝑔, the filters are called conjugate mirror filters.



Wavelet bases
39

Perfect reconstruction filter banks are characterized in a theorem by Theorem

7.11:

Eliminating 𝑔 and ෤𝑔 leads to the necessary condition

෠ℎ∗ 𝜔 ෠෨ℎ 𝜔 + ෠ℎ∗ 𝜔 + 𝜋 ෠෨ℎ 𝜔 + 𝜋 = 2

For finite impulse-response filters, there exists 𝑎 ∈ ℝ and 𝑙 ∈ ℤ such that

ො𝑔 𝜔 = 𝑎𝑒−𝑖 2𝑙+1 𝜔 ෠෨ℎ∗ 𝜔 + 𝜋 and ෠෤𝑔 𝜔 = 𝑎−1𝑒−𝑖 2𝑙+1 𝜔 ෠ℎ∗ 𝜔 + 𝜋

Perfect Reconstruction Filter Banks

Theorem 7.11: Vetterli. The filter bank performs an exact reconstruction for

any input signal if and only if

෠ℎ∗ 𝜔 + 𝜋 ෠෨ℎ 𝜔 + ො𝑔∗ 𝜔 + 𝜋 ෠෤𝑔 𝜔 = 0
and

෠ℎ∗ 𝜔 ෠෨ℎ 𝜔 + ො𝑔∗ 𝜔 ෠෤𝑔 𝜔 = 2
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A finite impulse conjugate mirror filter bank is characterized by a filter ℎ which

satisfies:

෠ℎ 𝜔
2

+ ෠ℎ 𝜔 + 𝜋
2

= 2 7.139

It is identical to the filter condition (7.29) in Theorem 7.2 that is required in

order to synthesize orthogonal wavelets. It is also equivalent to discrete

orthogonality properties:

A Riesz basis is orthonormal if the dual basis is the same as the original basis.

For filter banks this means that ℎ = ෨ℎ and 𝑔 = ෤𝑔. The filter ℎ is then a

conjugate mirror filter satisfying (7.139). And the resulting family ሼ

ሽ

ℎ[

]

𝑛 −

2𝑙 , 𝑔 𝑛 − 2𝑙 𝑙∈ℤ is an orthogonal basis of 𝑙2 ℤ .

Conjugate Mirror Filters



Time meets frequency

Example: pyramid decomposition

Original

128,129,125,64,65, ⋯
Transform coefficients

4123, −12.4, −96.7, 4.5, …



Time meets frequency

Example: pyramid decomposition

Similar data distribution

on different scales

Exponentially degrades

on the same spot



Time meets frequency

Example: pyramid decomposition

Horizontal edges

Vertical edges

𝑑𝑗
𝑉

𝑑𝑗
𝐻



Wavelet Bases

• Orthogonal Wavelet Bases

• Classes of Wavelet Bases

• Wavelets and Filter Banks

• Biorthogonal Wavelet Bases



Wavelet bases
45

◆ When the Riesz basis is an orthogonal basis, the multiresolution

approximation is orthogonal, and the base atom is called a scaling function. It

is always possible to orthogonalize a multiresolution approximation.

◆ However, orthogonalities imposes some constraints that may not be desirable.

One of the most important is that a compactly supported (orthogonal) scaling

function cannot symmetric and continuous. The symmetry is useful in the

analysis of finite signals.

◆ Some of these restrictions (notably the absence of symmetry) can be avoided

by using biorthogonal multiresolution approximations.

Orthogonality and Biorthogonality
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A pair 𝐕𝑗 𝑗∈ℤ
, 𝐕𝑙

∗
𝑙∈ℤ of multiresolution approximations is a biorthogonal 

multiresolution system if and only if

𝐋2 ℝ = 𝐕0 ⊕ 𝐕0
∗ ⊥

Then 𝐕0
∗ has a Riesz basis of the form 𝜃∗ሺ𝑡 − 𝑛ሻ, 𝑛 ∈ ℤ, such that the translations 

of 𝜃 and of  𝜃∗ form a biorthogonal system:

𝜃 𝑡 − 𝑘 , 𝜃∗ 𝑡 − 𝑛 = 𝛿𝑛−𝑘

We have a biorthogonal bases system instead of a single orthogonal basis.

Biorthogonal Multiresolution Approximations
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Biorthogonal wavelets are defined similarly to orthogonal wavelets, except that 

the starting point is biorthogonal multiresolution approximations. The following 

decompositions are performed:

Like in the orthogonal case, a signal in 𝐋2 can be written as:

Biorthogonal wavelets 
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Below is a biorthogonal system which includes a cubic B-spline. Dropping the

orthogonality constraint makes possible to have both regularity and symmetry.

Biorthogonal cubic B-spline scaling function Dual scaling function

Biorthogonal spline wavelet Dual Wavelet

Biorthogonal wavelets 
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The scaling equations on the scaling functions and wavelets show that the

decomposition and reconstruction of a signal from a resolution to the next one is

implemented by perfect reconstruction filter banks.

The coefficients in and in are computed from in

by applying conjugate mirror filters and subsampling the output:

The construction of biorthogonal wavelets is equivalent to the synthesis of perfect 

reconstruction filters having a stability property.

Biorthogonal wavelets and Discrete Filters
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The coefficients of ℎ and 𝑔 are defined by the scaling equations

Fast wavelet transform:
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where the z operator represents the insertion of zeroes.

is reconstructed from and by inserting zeroes between two

consecutive samples and summing their convolutions with the dual filters h2 and

g2 which define the dual scaling equations:

The coefficients of h2 and g2 are defined by the scaling equations:

Fast inverse wavelet transform:
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Property: Scaling Equation

As in the orthogonal case, 𝜓ሺ𝑡ሻ and 𝜙ሺ𝑡/2ሻ are related by a scaling equation

which is a consequence of the inclusions of the resolution spaces from coarse

to fine:

1

2
𝜓

𝑡

2
= ෍

𝑛=−∞

+∞

𝑔 𝑛 𝜙 𝑡 − 𝑛

Similar equations exist for the dual functions which determine the filters ℎ2

and 𝑔2.
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Property: Vanishing Moments

A biorthogonal wavelet has 𝑚 vanishing moments if and only if its dual

scaling function generates polynomials up to degree 𝑚. This can be verified by

looking at the biorthogonal decomposition formulas.

Hence there is an equivalence theorem between vanishing moments and the

number of zeroes of the filter's transfer, provided that duality has to be taken

into account. Thus the following three properties are equivalent:

⚫ the wavelet 𝜓 has 𝑝 vanishing moments

⚫ the dual scaling function 𝜙2 generates polynomials up to degree 𝑝

⚫ the transfer function of the dual filter ℎ2 and it 𝑝 − 1 first derivatives vanish

at 𝜔 = 𝜋

and the dual result is also valid. Duality appears naturally, because the filters

determine the degree of the polynomials which can be generated by the scaling

function, and this degree is equal to the number of vanishing moments of the

dual wavelet.
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Property: Compact Support

If the filters ℎ and ℎ2 have a finite support, then the scaling functions have the

same support, and the wavelets are compactly supported. If the supports of the

scaling functions are respectively [𝑁1, 𝑁2] and 𝑀1, 𝑀2 , then the

corresponding wavelets have support [ሺ𝑁1 − 𝑀2 + 1ሻ/2, ሺ𝑁2 − 𝑀1 + 1ሻ/2]

and [ሺ𝑀1 − 𝑁2 + 1ሻ/2, ሺ𝑀2 − 𝑁1 + 1ሻ] respectively.

The atoms are thus compactly supported if and only if the filters ℎ and ℎ2 are.
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Property: Regularity

Theorem 7.6 provides again a sufficient regularity condition. Remember that

this condition bears on the filter ℎ which determines the scaling equation.

Hence the regularity of the primal atoms are related to the primal filters.

Theorem 7.6: Tchamitchian. Let ෠ℎ 𝜔 be a conjugate mirror filter with 𝑝
zeroes at 𝜋 and that satisfies the sufficient conditions of Theorem 7.2. Let us

perform the factorization

෠ℎ 𝜔 = 2
1 + 𝑒𝑖𝜔

2

𝑝

መ𝑙 𝜔

If sup
𝜔∈ℝ

መ𝑙 𝜔 = 𝐵, then 𝜓 and 𝜙 are uniformly Lipschitz 𝛼 for

𝛼 < 𝛼0 = 𝑝 − log2 𝐵 − 1



Wavelet bases
56

Property: Wavelet Balancing

Consider the following decomposition of 𝑓:

𝑓 = ෍

𝑛,𝑗=−∞

+∞

𝑓, 𝜓𝑗,𝑛
∗ 𝜓𝑗,𝑛

The number of vanishing moments of a wavelet is determined by its dual filter.

It corresponds to the approximating power of the dual multiresolution

sequence. This is why it is preferred to synthesize a decomposition filter h with

many vanishing moments, and possibly with a small support.

On the other hand, this same filter ℎ determines the regularity of 𝜙, and hence

of 𝜓. This regularity increases with the number of vanishing moments, that is,

with the number of zeroes of ℎ.
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Property: Symmetry

Unlike the orthogonal case, it is possible to synthesize biorthogonal wavelets

and scaling functions which are symmetric or antisymmetric and compactly

supported. This makes it possible to use the folding technique to build

wavelets on an interval.

If the filters ℎ and ℎ2 have and odd length and are symmetric with respect to 0,

then the scaling functions have an even length and are symmetric, and the

wavelets are also symmetric. If the filters have an even length and are

symmetric with respect to 𝑛 = 1/2, then the scaling functions are symmetric

with respect to 𝑛 = 1/2, while the wavelets are antisymmetric.
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Homework

Chapter 7: 7.2 and 7.7 (a) (b) (A Wavelet Tour of Signal Processing, 3rd

edition)
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Many Thanks 

Q & A


